Impact Lab


Subscribe Now to Our Free Email Newsletter
July 26th, 2013 at 9:31 am

Light completely stopped for 1 minute inside a crystal

This breakthrough could lead to the creation of long-range quantum networks.

University of Darmstadt scientists in Germany have stopped light for one minute. Light is usually the fastest thing in the known universe and travels at 300 million meters per second, but was stopped dead still inside a crystal for one full minute. This effectively creates light memory, where the image being carried by the light is stored in crystals. Beyond being utterly cool, this breakthrough could lead to the creation of long-range quantum networks — and perhaps, tantalizingly, this research might also give us some clues on accelerating light beyond the universal speed limit.

IL-Header-Communicating-with-the-Future

 

 

Back in 1999, scientists slowed light down to just 17 meters per second, and then two years later the same research group stopped light entirely — but only for a few fractions of a second. Earlier this year, the Georgia Institute of Technology stopped light for 16 seconds — and now, the University of Darmstadt has stopped light for a whole minute.

To stop light, the German researchers use a technique called electromagnetically induced transparency (EIT). They start with a cryogenically cooled opaque crystal of yttrium silicate doped with praseodymium. (The image above is unrelated; sadly there isn’t an image of the actual crystal that was used to stop light.) A control laser is fired at the crystal, triggering a complex quantum-level reaction that turns it transparent. A second light source (the data/image source) is then beamed into the now-transparent crystal. The control laser is then turned off, turning the crystal opaque. Not only does this leave the light trapped inside, but the opacity means that the light inside can no longer bounce around — the light, in a word, has been stopped.

With nowhere to go, the energy from the photons is picked up by atoms within the crystal, and the “data” carried by the photons is converted into atomic spin excitations.  To get the light back out of the crystal, the control laser is turned back on, and the spin excitations are emitted at photons. These atomic spins can maintain coherence (data integrity) for around a minute, after which the light pulse/image fizzles. In essence, this entire setup allows the storage and retrieval of data from light memory (or should that be optical memory?)

In the image above, you can see that the scientists successfully stored a simple image (three horizontal lines) in the crystal for 60 seconds. It should be possible to store data for longer periods, too, using other crystals — such as europium-doped yttrium silicate — and by using specially tailored magnetic fields.

Light-based memory that preserves quantum coherence (such as polarization and entanglement) is vital for the creation of a long-range quantum network. Just as with conventional, electronic routers, quantum routers must be able to store incoming packets, and then retransmit them — which is exactly what today’s discovery allows. Even so, though, there are still a few barriers to overcome before we can roll out a quantum internet — namely, we must find a method of coherently storing light that introduces so little noise that single photons can still be reliably stored/retrieved, and we need to do it at room temperature, too. Cryogenics might be acceptable at the data center level, but I can’t imagine having a cryogenically cooled router in my house.

Via Extreme Tech

IL-Header-Communicating-with-the-Future

Comments are closed.

Coworking 7